Abstract:Visual In-Context Learning (VICL) enables adaptively solving vision tasks by leveraging pixel demonstrations, mimicking human-like task completion through analogy. Prompt selection is critical in VICL, but current methods assume the existence of a single "ideal" prompt in a pool of candidates, which in practice may not hold true. Multiple suitable prompts may exist, but individually they often fall short, leading to difficulties in selection and the exclusion of useful context. To address this, we propose a new perspective: prompt condensation. Rather than relying on a single prompt, candidate prompts collaborate to efficiently integrate informative contexts without sacrificing resolution. We devise Condenser, a lightweight external plugin that compresses relevant fine-grained context across multiple prompts. Optimized end-to-end with the backbone, Condenser ensures accurate integration of contextual cues. Experiments demonstrate Condenser outperforms state-of-the-arts across benchmark tasks, showing superior context compression, scalability with more prompts, and enhanced computational efficiency compared to ensemble methods, positioning it as a highly competitive solution for VICL. Code is open-sourced at https://github.com/gimpong/CVPR25-Condenser.
Abstract:The task of radio map estimation aims to generate a dense representation of electromagnetic spectrum quantities, such as the received signal strength at each grid point within a geographic region, based on measurements from a subset of spatially distributed nodes (represented as pixels). Recently, deep vision models such as the U-Net have been adapted to radio map estimation, whose effectiveness can be guaranteed with sufficient spatial observations (typically 0.01% to 1% of pixels) in each map, to model local dependency of observed signal power. However, such a setting of sufficient measurements can be less practical in real-world scenarios, where extreme sparsity in spatial sampling can be widely encountered. To address this challenge, we propose RadioFormer, a novel multiple-granularity transformer designed to handle the constraints posed by spatial sparse observations. Our RadioFormer, through a dual-stream self-attention (DSA) module, can respectively discover the correlation of pixel-wise observed signal power and also learn patch-wise buildings' geometries in a style of multiple granularities, which are integrated into multi-scale representations of radio maps by a cross stream cross-attention (CCA) module. Extensive experiments on the public RadioMapSeer dataset demonstrate that RadioFormer outperforms state-of-the-art methods in radio map estimation while maintaining the lowest computational cost. Furthermore, the proposed approach exhibits exceptional generalization capabilities and robust zero-shot performance, underscoring its potential to advance radio map estimation in a more practical setting with very limited observation nodes.
Abstract:Assessing the video comprehension capabilities of multimodal AI systems can effectively measure their understanding and reasoning abilities. Most video evaluation benchmarks are limited to a single language, typically English, and predominantly feature videos rooted in Western cultural contexts. In this paper, we present VideoVista-CulturalLingo, the first video evaluation benchmark designed to bridge cultural, linguistic, and domain divide in video comprehension. Our work differs from existing benchmarks in the following ways: 1) Cultural diversity, incorporating cultures from China, North America, and Europe; 2) Multi-linguistics, with questions presented in Chinese and English-two of the most widely spoken languages; and 3) Broad domain, featuring videos sourced from hundreds of human-created domains. VideoVista-CulturalLingo contains 1,389 videos and 3,134 QA pairs, and we have evaluated 24 recent open-source or proprietary video large models. From the experiment results, we observe that: 1) Existing models perform worse on Chinese-centric questions than Western-centric ones, particularly those related to Chinese history; 2) Current open-source models still exhibit limitations in temporal understanding, especially in the Event Localization task, achieving a maximum score of only 45.2%; 3) Mainstream models demonstrate strong performance in general scientific questions, while open-source models demonstrate weak performance in mathematics.
Abstract:Incremental learning aims to enable models to continuously acquire knowledge from evolving data streams while preserving previously learned capabilities. While current research predominantly focuses on unimodal incremental learning and multimodal incremental learning where the modalities are consistent, real-world scenarios often present data from entirely new modalities, posing additional challenges. This paper investigates the feasibility of developing a unified model capable of incremental learning across continuously evolving modal sequences. To this end, we introduce a novel paradigm called Modality Incremental Learning (MIL), where each learning stage involves data from distinct modalities. To address this task, we propose a novel framework named Harmony, designed to achieve modal alignment and knowledge retention, enabling the model to reduce the modal discrepancy and learn from a sequence of distinct modalities, ultimately completing tasks across multiple modalities within a unified framework. Our approach introduces the adaptive compatible feature modulation and cumulative modal bridging. Through constructing historical modal features and performing modal knowledge accumulation and alignment, the proposed components collaboratively bridge modal differences and maintain knowledge retention, even with solely unimodal data available at each learning phase.These components work in concert to establish effective modality connections and maintain knowledge retention, even when only unimodal data is available at each learning stage. Extensive experiments on the MIL task demonstrate that our proposed method significantly outperforms existing incremental learning methods, validating its effectiveness in MIL scenarios.
Abstract:Asymmetric retrieval is a typical scenario in real-world retrieval systems, where compatible models of varying capacities are deployed on platforms with different resource configurations. Existing methods generally train pre-defined networks or subnetworks with capacities specifically designed for pre-determined platforms, using compatible learning. Nevertheless, these methods suffer from limited flexibility for multi-platform deployment. For example, when introducing a new platform into the retrieval systems, developers have to train an additional model at an appropriate capacity that is compatible with existing models via backward-compatible learning. In this paper, we propose a Prunable Network with self-compatibility, which allows developers to generate compatible subnetworks at any desired capacity through post-training pruning. Thus it allows the creation of a sparse subnetwork matching the resources of the new platform without additional training. Specifically, we optimize both the architecture and weight of subnetworks at different capacities within a dense network in compatible learning. We also design a conflict-aware gradient integration scheme to handle the gradient conflicts between the dense network and subnetworks during compatible learning. Extensive experiments on diverse benchmarks and visual backbones demonstrate the effectiveness of our method. Our code and model are available at https://github.com/Bunny-Black/PrunNet.
Abstract:Conditional image generation has gained significant attention for its ability to personalize content. However, the field faces challenges in developing task-agnostic, reliable, and explainable evaluation metrics. This paper introduces CIGEval, a unified agentic framework for comprehensive evaluation of conditional image generation tasks. CIGEval utilizes large multimodal models (LMMs) as its core, integrating a multi-functional toolbox and establishing a fine-grained evaluation framework. Additionally, we synthesize evaluation trajectories for fine-tuning, empowering smaller LMMs to autonomously select appropriate tools and conduct nuanced analyses based on tool outputs. Experiments across seven prominent conditional image generation tasks demonstrate that CIGEval (GPT-4o version) achieves a high correlation of 0.4625 with human assessments, closely matching the inter-annotator correlation of 0.47. Moreover, when implemented with 7B open-source LMMs using only 2.3K training trajectories, CIGEval surpasses the previous GPT-4o-based state-of-the-art method. Case studies on GPT-4o image generation highlight CIGEval's capability in identifying subtle issues related to subject consistency and adherence to control guidance, indicating its great potential for automating evaluation of image generation tasks with human-level reliability.
Abstract:Human Activity Recognition (HAR) primarily relied on traditional RGB cameras to achieve high-performance activity recognition. However, the challenging factors in real-world scenarios, such as insufficient lighting and rapid movements, inevitably degrade the performance of RGB cameras. To address these challenges, biologically inspired event cameras offer a promising solution to overcome the limitations of traditional RGB cameras. In this work, we rethink human activity recognition by combining the RGB and event cameras. The first contribution is the proposed large-scale multi-modal RGB-Event human activity recognition benchmark dataset, termed HARDVS 2.0, which bridges the dataset gaps. It contains 300 categories of everyday real-world actions with a total of 107,646 paired videos covering various challenging scenarios. Inspired by the physics-informed heat conduction model, we propose a novel multi-modal heat conduction operation framework for effective activity recognition, termed MMHCO-HAR. More in detail, given the RGB frames and event streams, we first extract the feature embeddings using a stem network. Then, multi-modal Heat Conduction blocks are designed to fuse the dual features, the key module of which is the multi-modal Heat Conduction Operation layer. We integrate RGB and event embeddings through a multi-modal DCT-IDCT layer while adaptively incorporating the thermal conductivity coefficient via FVEs into this module. After that, we propose an adaptive fusion module based on a policy routing strategy for high-performance classification. Comprehensive experiments demonstrate that our method consistently performs well, validating its effectiveness and robustness. The source code and benchmark dataset will be released on https://github.com/Event-AHU/HARDVS/tree/HARDVSv2
Abstract:Self-Supervised Video Hashing (SSVH) compresses videos into hash codes for efficient indexing and retrieval using unlabeled training videos. Existing approaches rely on random frame sampling to learn video features and treat all frames equally. This results in suboptimal hash codes, as it ignores frame-specific information density and reconstruction difficulty. To address this limitation, we propose a new framework, termed AutoSSVH, that employs adversarial frame sampling with hash-based contrastive learning. Our adversarial sampling strategy automatically identifies and selects challenging frames with richer information for reconstruction, enhancing encoding capability. Additionally, we introduce a hash component voting strategy and a point-to-set (P2Set) hash-based contrastive objective, which help capture complex inter-video semantic relationships in the Hamming space and improve the discriminability of learned hash codes. Extensive experiments demonstrate that AutoSSVH achieves superior retrieval efficacy and efficiency compared to state-of-the-art approaches. Code is available at https://github.com/EliSpectre/CVPR25-AutoSSVH.
Abstract:The traditional paradigm to update retrieval models requires re-computing the embeddings of the gallery data, a time-consuming and computationally intensive process known as backfilling. To circumvent backfilling, Backward-Compatible Learning (BCL) has been widely explored, which aims to train a new model compatible with the old one. Many previous works focus on effectively aligning the embeddings of the new model with those of the old one to enhance the backward-compatibility. Nevertheless, such strong alignment constraints would compromise the discriminative ability of the new model, particularly when different classes are closely clustered and hard to distinguish in the old feature space. To address this issue, we propose to relax the constraints by introducing perturbations to the old feature prototypes. This allows us to align the new feature space with a pseudo-old feature space defined by these perturbed prototypes, thereby preserving the discriminative ability of the new model in backward-compatible learning. We have developed two approaches for calculating the perturbations: Neighbor-Driven Prototype Perturbation (NDPP) and Optimization-Driven Prototype Perturbation (ODPP). Particularly, they take into account the feature distributions of not only the old but also the new models to obtain proper perturbations along with new model updating. Extensive experiments on the landmark and commodity datasets demonstrate that our approaches perform favorably against state-of-the-art BCL algorithms.
Abstract:Reinforcement Learning (RL) algorithms for safety alignment of Large Language Models (LLMs), such as Direct Preference Optimization (DPO), encounter the challenge of distribution shift. Current approaches typically address this issue through online sampling from the target policy, which requires significant computational resources. In this paper, we hypothesize that during off-policy training, while the ranking order of output generated by policy changes, their overall distribution remains relatively stable. This stability allows the transformation of the sampling process from the target policy into a re-ranking of preference data. Building on this hypothesis, We propose a new framework that leverages the model's intrinsic safety judgment capability to extract reward signals, which are then used to calculate label confidence for preferences reordering. Extensive experimental results and theoretical analysis demonstrate that the proposed method effectively addresses the distribution shift issue, remarkably enhancing the safety performance while reducing about 300x computational overheads.